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1 Introduction

The aim of this project is to study the performance of data center workloads on the cache hierarchy.
To represent data center workloads we have selected applications from the GAP benchmark suite[1].

2 GAP Benchmark Suite

Graph Algorithm Platform (GAP) Benchmark Suite is a benchmark suite for graph algorithms and
their applications. Graph algorithms and their application are currently gaining renewed interest,
partly because of social networking and its analysis[2]. There hasn’t been any standard for these
applications, so Graph500 was developed for this. The biggest shortcomings of Graph 500 are its
focus on one kernel (breadth-first search) and only one synthetic input graph topology, hence, Uni-
versity of California Berkeley introduced GAP to help standardize graph processing evaluations for
easier comparisons of research results and improvements[1]. They selected six kernels based on how
commonly they are used. These kernels are:

• Breadth-First Search (BFS): BFS is a traversal order starting from a source vertex. BFS
traverses all vertices at the current depth (distance from the source vertex) before moving onto
the next depth.

• Single-Source Shortest Paths (SSSP): SSSP computes the distances of the shortest paths
from given source vertex to every other reachable vertex.

• PageRank (PR): PR computes the PageRank score for all vertices in the graph.

• Connected Components (CC): CC labels all vertices by their connected component and
each connected component is assigned its own unique label.

• Betweenness Centrality (BC): BC approximates the betweenness centrality score for all
vertices in the graph by only computing the shortest paths from a subset of the vertices.

• Triangle Counting (TC): TC computes the total number of triangles (triangle to be three
vertices that are directly connected to each other) in a graph.

The input graphs for the benchmark:

• Twitter is an example of a social network topology. It is a directed graph with number of
vertices, |V|=61.6M, and edges, |E|=1,468.4M.

• Web is a web-crawl of the .sk domain (Internet country code top-level domain (ccTLD) for
Slovakia). It is a directed graph with number of vertices, |V|=61.6M, and edges, |E|=1,468.4M.

• Road is the distances of all of the roads in the USA. It is a directed graph with number of
vertices, |V|=23.9M, and edges, |E|=58.3M.
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• Kron uses the Kronecker synthetic graph generator[3]. It is an undirected graph with number
of vertices, |V|=134.2M, and edges, |E|=2,111.6M.

• Urand is synthetically generated by the Erdős–Réyni model (Uniform Random). It is an undi-
rected graph with number of vertices, |V|=134.2M, and edges, |E|=2,147.4M.

2.1 Motivation

As there is a surge of interest in graph algorithms and their applications in social networks, importance
of their analysis is growing[4][5]. Also, as the present cache replacement policies (LRU, Hawkeye,
SHiP) are not giving a good performance (mainly because of random accesses)[6], there is a need for
understanding the accesses made by the graph applications.

2.2 Resources & Methodologies

GAP Benchmark Suite has been implemented and maintained in a GitHub repository (https://
github.com/sbeamer/gapbs). The graph inputs can be loaded in various formats as given in the
mentioned link. We looked at serialized pre-built graphs (unweighted and weighted), or to put it in a
better way:

• BC, BFS, CC, PR kernels were run with unweighted directed input graphs Twitter, Web.

• SSSP kernel was run with weighted directed input graphs Twitter, Web.

• TC kernel was run with unweighted undirected input graphs Kron, Urand.

Our analysis on traces of the above mentioned cases were done with the help of ChampSim (https:
//github.com/ChampSim/ChampSim). The traces were generated with the help of PIN tool tracer.

Trace Generation

The in-built tracer generates a different trace structure format compared to that used by ChampSim.
Hence, we had to modify the PIN tool tracer to generate the required trace structure format. The
modified tracer generates 4 threads of a graph application with an input graph (24 such combinations
as mentioned above).

Parameters/Assumptions

The ChampSim simulated the generate traces with:

• Address space IDs: asid[0] = 4, asid[1] = 16

• Number of warm-up instructions: 250M

• Number of simulation instructions: 250M

• Cache Replacement Policies: LRU, Hawkeye, SHiP

Statistics

Python scripts were used to collect the statistics produced by the simulator.
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2.3 Analysis

Below are the obtained results when ChampSim was simulated on the 24 combinations. As there are
many combinations, we divide them into 2 sets:

• First Set: BC, BFS, CC, PR, SSSP with Twitter and TC with Kron

• Second Set: BC, BFS, CC, PR, SSSP with Web and TC with Urand

For L1I cache, the results were not that insightful compared to the other caches. For the lower level
caches (L1D and L2C), as the replacement policies are same, we neglected the results obtained from
simulation of other replacement policies as they were for L3C.

(a) First Set

(b) Second Set

Figure 1: L1D MPKI
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(a) First Set

(b) Second Set

Figure 2: L2C MPKI
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(a) First Set

(b) Second Set

Figure 3: LLC MPKI

2.4 Future Work

We could check the traces with opt and compare them with the obtained results. Moreover, this
report does work only on the above 24 combinations. This can be extended to other combinations,
thus, can use the results in studying the cache replacement policies in graph applications.
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